タイトル
2021 年度 第3学期
教養教育  
日英区分: 日本語
数理・データサイエンスの基礎
Basic Mathematical and Data Sciences
 
講義番号 科目区分 学期
912914 教養教育科目 第3学期
ナンバリングコード 教室
UILZ0MEHZ0001N 一般教育棟A21教室
必修・選択の別
必修
単位数 曜日・時限
1 月1〜2
担当教員(ローマ字表記)
中村 隆夫 [NAKAMURA Takao], 後藤 佐知子 [GOTO Sachiko], 飯塚 誠也 [IIZUKA Masaya]
SDGs関連項目
  • 質の高い教育をみんなに
  • 産業と技術革新の基盤をつくろう
対象学生
2021年度入学者:医(保)
2020年度入学者:医(保)
2019年度以前入学者:-
他学部学生の履修の可否
対象学生の項目を参照
連絡先
2回〜6回:飯塚 誠也, iizuka@s.okayama-u.ac.jp, Microsoft Teamsのチャット.
中村隆夫:nakamura@md.okayama-u.ac.jp
オフィスアワー
飯塚誠也:可能な限りメール等で連絡してください。
学部・研究科独自の項目
関連しない
使用言語
日本語
授業の概要
今日では情報通信技術の普及により大量のデータが収集・蓄積されているが、それらは活用されなければ意味をもつ情報とならない。このようなデータを対象とする学問分野がデータサイエンスである。
本授業では、データサイエンスの基盤となる統計および数理の基礎と、データサイエンスの応用事例を修得し、さらに機械学習の概念を学んで、データサイエンスの果たす役割を概観する。
学習目的
データサイエンスの基盤となる統計および数理の基礎、データサイエンスの応用事例、機械学習の概念を修得する。
到達目標
(1) 現実の課題に対するデータサイエンスの役割を理解する。
(2) データの基本的な分析方法を理解し、コンピュータを用いて実践することができる。
(3) 機械学習の基礎を理解する。
(4) 自分の専門分野におけるデータサイエンスの活用事例を述べることができる。
授業計画
1. ガイダンス
2. 現代社会におけるデータサイエンス(1)
3. データ分析の基礎(1)
4. コンピュータを用いたデータ分析
5. データ分析の基礎(2), 現代社会におけるデータサイエンス(2)
6. 機械学習の基礎と応用事例
7. 保健学に関連する統計の実際
8. まとめ
授業時間外の学習(予習・復習)方法(成績評価への反映についても含む)
授業において別途指示する
授業形態
(1)授業形態-全授業時間に対する[講義形式]:[講義形式以外]の実施割合
80% : 20%
(2)授業全体中のアクティブ・ラーニング
協働的活動(ペア・グループワーク、ディスカッション、プレゼンテーションなど)
なし
対話的活動(教員からの問いかけ、質疑応答など)
少ない
思考活動(クリティカル・シンキングの実行、問いを立てるなど)
少ない
理解の確認・促進(問題演習、小テスト、小レポート、授業の振り返りなど)
やや多い
(3)授業形態-実践型科目タイプ
該当しない
(4)授業形態-履修者への連絡事項
なし
使用メディア・機器・人的支援の活用
視聴覚メディア(PowerPointのスライド、CD、DVDなど)
多い
学習管理システム(Moodleなど)
やや多い
人的支援(ゲストスピーカー、TA、ボランティアなど)
やや多い
履修者への連絡事項
なし
教科書
備考
なし
参考書等
備考
"大学生のためのデータサイエンス(I), (II) オフィシャルスタディノート"
滋賀大学データサイエンス学部 編
日本統計協会
成績評価の方法
Moodleでの小テスト、滋賀大学ds-moocによる確認テスト、および演習課題提出により評価する。
受講要件
なし
教職課程該当科目
この項目は当該科目に該当しない
JABEEとの関連
関連しない
SDGs関連項目

(教育)すべての人に包摂的かつ公正な質の高い教育を確保し、生涯学習の機会を促進する。
(インフラ、産業化、イノベーション)強靱(レジリエント)なインフラ構築、包摂的かつ持続可能な産業化の促進及びイノベーションの推進を図る。
実務経験のある教員による授業科目
備考/履修上の注意
Moodleおよびds-moocでの小テスト等を実施するので、毎回ノートPCを持参してください。特に、Excelでの演習を実施する回では必須です。
ページの先頭へ